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SLEPIANIS INEQUALITY VIA THE

CENTRAL LIMIT THEOREM

By

Fred W. Huffer

We give a proof of Slepian's (1962) inequality which does not

rely on Plackett's identity or geometric arguments. The proof uses a

partial ordering of distributions which is preserved under convolutions

and scale transformations. Slepian's inequality may be formulated in .

terms of such a partial ordering. The properties of this partial

ordering allow us to obtain results for the multivariate normal distri-

bution by using the central limit theorem.

Tchen (1980) also noted the preservation under convolution

property and from this obtained Slepian's inequality in the bivariate

case. Further information and references concerning partial orderings

of probability distributions may be found in Eaton (1982) or Chapter I

of Stoyan (1983).

Let F be a collection of bounded continuous real-valued functions

defined on R k . Suppose that F is invariant under both translations and

scaling, that is, for any bcRk, c > 0 and f F, the function g

defined by g(x) - f(cx+b) also belongs to F. Define X << Y if X and i

Y are random vectors satisfying Ef(X) < Ef(Y) for all f c F.

Our object will be to prove inequalities concerning multivariate %

normal distributions. Let Z and A be any k xk covariance matrices.

Let X and Y be k-dimensional normal random vectors with = EY* -0,
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coy - , coy - A. We wish to determine if X << * in which case

we also say that Z <<A. The following result can sometimes be used to

make this determination.

Proposition 1: Let X * and Y be as given above. Suppose the random

vectors X and Y satisfy EX - EY - 0, cov X - E, coy Y = A. If

X<<Y, then X <<Y*.

In our application X and Y will be chosen to have simple

discrete distributions so that the relationship X<< Y is easy to

verify.

Proof: First note that

(a) If U,V,W are independent with U <<V, then U+W<<V+W .

This follows by conditioning on the value of W and using the translation

invariance of F. Let X1,X2,X3.... be i.i.d. copies of X and

Y1 ,Y2,Y3,... be i.i.d. copies of Y. Since X<< Y, using (a) twice in

succession gives XI+X2 << Y1 +X2 << Y1 +Y2. By induction we obtain

S.+ Xn<< YY2 +'''+ Yn. By the scale invariance of F,

(b) U << V implies cU <<cV for all c > 0.

Thus n-/2 (X I.++ xn) << n-1/2(Y+Y2+.--+Yn). Now let n and use

the Central Limit Theorem to obtain X*<< Y

The next proposition is useful in extending the ordering << to a

broader class of covariance matrices.

2
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Proposition 2: Suppose A1 and A2 are any kx k covariance matrices

satisfying A1 < < A2. Define r - A2-A1 . Choose t > 0. If E and

z+tr are both nonsingular covariance matrices, then E << +tr.

Proof: Let 41,t2903 denote kx k covariance matrices. In terms of

covariance matrices (a) and (b) become:

(c) 01 << 2 implies 0143 << 02+43

(d) 1<<2 implies co 1 " c 0 2 for all c > 0 .

These are used implicitly in the following argument. Choose A small

enough so that both (E-cA1 ) and (E+tr-cA1 ) are positive definite

whenever 0 < c < A. By taking convex combinations of these matrices we

find that (E+sr-cA1 ) is positive definite (and therefore a covariance

matrix) when 0 < s < t and 0 < c < A. Now

z+sr - (E+sr-cAI ) + cA << (r+sr-Al) + cA 2 u E+ (s+e)r

Here we have used A A<< Thus z+sr<< E+(s+c)r for 0 < s < t and

0 < c < A. Since A does not depend on s, it is clear that

E<<E+tr as desired.

For x - (x1,x2,...,x k ) and y ' (y1 ,Y2 ,...,yk) define

rVy= (x1 vYl'x 2 vY 2,...,xkvYk) and xAy - (X1AYlX2AY2,...,XkAYk)

where v and A denote the maximum and minimum respectively. A function

f defined on R k is called L-superadditive if f(x)+f(y) < f(xVy)+f(xAy)

3.



for all x and y. This condition was introduced by Lorentz (1953) who

also showed that when f has continuous second partial derivatives, f

is L-superadditive if and only if

a2f(x) > 0 for all x and all i xj

See Marshall and Olkin (1979) for further information on L-superadditivity.

Proposition 3: Let F be the class of bounded, continuous, L-superadditive

k ~
functions on R . Suppose E - (a) and H - (wi) are kx k non- *

ii ii

singular covariance matrices. If ai = ii for all i and aij < 7ij

for all i #J, then Z<< .

This result is very similar to Proposition 1 of Joag-dev, Perlman

and Pitt (1983) and it easily implies Slepian's inequality as given in

Slepian (1962). The argument needed to obtain Slepian's inequality is

basically the same as that in Corollary 1 of Joag-dev, et al. V

Proof: Let ,,0,,0 be k-dimensional vectors defined by

, a -1, 0 for i~p or q,

p q ,ai

op -0-, e i = O for ip or q

p -q -l, *i O for i p or q
Sq

Define the random vectors X and Y by

4
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1 1
P{X-ct} - P{X-0} - ' P{Y-e} - P{Y-0} 2

Since av 8 - 8 and aA 1 - 0, it is clear that X<<Y. Now applying

Proposition 1 leads to a corresponding ordering between normal random

vectors with covariance matrices

coy X Sp  and coy Y - T

where the entries of Spq and T are given by Sp q = Spq = 1,
pp qa

-1and 5 q 0  otherwise, T T~P T ~
p Pij pp qq pq qp

and Tp = 0 otherwise. Since p and q are arbitrary, we have shown
ii

Spq <<Tp for all p # q. Now we can use (c) and (d) to deduce that

A <<A 2  where

A1 - . bpqpq A - bp
1pq 2 pqpq p,q
p<q p<q

and bpq are arbitrary nonnegative numbers. Choose bij (Wij -ij)/2

for all i< J. Now using Proposition 2 with r A-A n -E completes
21

the proof.
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